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Title Slide: Introduction to Wavelets

This half-day course on wavelets is intended to be a general introduction to this exciting
new topic in signal processing. Wavelets have been proven effective for a number of signal
processing tasks, including compression and edge and transient detection. The computational
complexity of a wavelet decomposition is O(N), versus ON log N) for the FFT, making it
very competitive. In addition, it has several specific advantages over the FFT in many
applications. Two of these applications will be discussed in this course: transient detection
and image compression.

Wavelets have been applied for a wide variety of tasks, and MITRE has been involved in
wavelet research for a number of years, leading to over thirty publications. This course was
developed in conjunction with W090 and W096 staff (who ran a successful 3-day wavelet
course in Washington), and taught in Bedford by P. Topiwala. This introductory course will
be followed by a second course covering the wavelet research and applications currently
being developed at MITRE.




Course Outline

® Preliminaries
® Theory
® Applications

Course Outline

This course will be divided into an introduction to the theory and to the applications.
Because of the wide audience of this course, a general summary of preliminary material is
provided as well.




Preliminaries

® Linear Algebra
® Linear Anmalysis

@ Fourier Transform

Preliminaries

The preliminaries include linear algebra in finite dimensions, linear analysis in infinite
dimensions, and some well-known facts about the Fourier transform.




Linear Algebra 1

Vector space Vover R,C v,weV, a,BeR,C=
Finite dimensions : R",C"

Inner product : (v.w)=§ ViWi

Norm: hl:ﬂ

Basis {.0?:v=%um.m€ R,C

Orthonormal (ON) Basis: aj =(v,oa)
Thatis, v= %(v, o) o

Example : ¢k =(0,--,1,--:0) 1 Inthe kth spot (standard basis)

MITRE

Linear Algebra 1

This slide covers the basic notions of a vector space and an orthonormal basis, including
the definition of an inner product, and the standard orthonormal basis.




Linear Algebra 2

Linear Map : A:V 2 W
A(l@vi+BV2)=aA(v)+BA(v2)

Dual Basis : V,{ex} ez:V—R,C

1, k=1
0, eise

ok(e) =8 = {

Matrix Rep . (V,{ex}), (W,{t})
A(ek) = ;-uﬂ

Example (standard ) ef=ej =(0,--,1,--0), 1 Inthekth spot

n
A o (ai)) If A(e))= E1 ajel

MITRE

Linear Algebra 2

A linear map between two vector spaces can be represented as a matrix, given bases for
the vector spaces.




Linear Algebra 3

® VO Whasbasis ¢i,---,en,ft,-,im;dlm =n+m

® V@ Whasbasis {e® )}, I=1-,n;]=1---.m. dim=nm

space of matrices of size nxm, basis {e ® {}}
® HA:V=YV, B:-W- W, then

A®B:VOW-VOW |, AGB:VYOWHVEW
AO®B(v,w)=(Av,Bv) , AGB (VO W)=Av@®Bw

() e

Linear Algebra 3

Given two vector spaces with bases, new vector spaces can be constructed using the
direct sum (&) or tensor product (®).




Linear Algebra 4

jsomorphism : A:V — W such that there exists
B:W — VwithBA =1y,AB = 1w

For matrix , need det A = 0. Matrixes must be square
GLn(R),GLn(C)

Isometry or unitary map : (Avy,Ava)=(vi,v2),
foranyv ,v2€eV

For matrix , need A *A = AA* =1,
where A * = (A"), Hermitian conjugate

O(n), U(n)

Linear Algebra 4

Two vector spaces are equivalent (or isomorphic) if maps can be found in either
direction, such that their composition is the identity map both ways. An important related

concept is that of a unitary map, which preserves inner products. This is automatically an
isomorphism.




Linear Algebra 5

Hermitian : Az A® aj=ap
Then Bi=e'™ Isunitary , fort €R, and Jim By =
-

Diagonalization : A Hermitianmap A :V — V hasan
ONbasis {ex} 3 A(ex)=Ckoex

el

Linear Algebra 5

A Hermitian matrix can be diagonalized. Its eigenvectors can be chosen to be
orthonormal, and its eigenvalues are real.




Linear Algebra 6

e Frames: {e4
Therearenumbers Q0<A<B<

such that foranyvinV,

2 2 2
A |lvil = Zl<v,e2| < B |Iv]|

® Tightif A = B; Exact if we cannot remove
any vector without losing completeness

(1,0), (1,1) an exact frame
(1,0), (1,0), (0,1), (0,1) is a tight frame, A=B=2

® Tight exact frame with A=B=1 is an ON Basis
MITRE

Linear Algebra 6

While we will mainly deal with orthonormal bases, there is a generalization of the notion
of bases that is useful: frames. A frame is a set of vectors, often too many to be a basis, such
that the size of any vector in the space can be bounded above and below in terms of the inner
products of that vector with the vectors in the frame. A right frame is a basis, while an exact
frame is one where the bound constants are equal. An orthonormal basis is a tight exact
frame with bound constants equal to 1.




Linear Analysis 1

- 2
infinite dimensions : |2 = {(u) 21:h|| < -} complex sequences

L2(R) = {:R = ¢| [HI? <=}, complex functions
Aiso L2 0,1]),L2(R"),L%(X), XcR"
Example , X =S'. circle InR 2

All these spacss are isomorphic, in fact unitarily!
That is because they all have an orthonormal basis.
Different " realizations” of one space H, Hilbert space.

Linear Analysis 1

A finite dimensional space is equal to the space of n arbitrary numbers (n = dimension).
In infinite dimensions, instead of dealing with spaces of arbitrary numbers, the notion of
convergence enters. One has the space of infinite sequences where the sum of the norm-
squared terms is finite. While there are several other natural generalizations (e.g., the
functions on the real line whose norm-squared integral is finite), all of these spaces are
isomorphic to each other (by a unitary map). That is because they all have orthonormal bases
of the same cardinality.

10




Linear Analysis 2

e L%([0,21)=L2([0,1]u [1,2D = L2 ([0, 1)@ L ([1,2])

° L’(R)=L’( U [n,n+1])= ® L2([n,n+1) = ® H, =H!

o L*)(R")=L%(R)®--®L*(R)= H,®---®H, =H!

Although all of these spaces are really the same, thelr
different aspects give rise to different bases.

MITRE

Linear Analysis 2

If we denote the common space by H, the fact that the various definitions lead to the same
space implies some interesting things about H under direct sum () and tensor product (&®).

11




Linear Analysis 3

I, has standard basls {e, },e, = (o. :o,)

L2(R) has no natural ON basis!
Traditionally, important ON bases arose In relation
to natural Hermitian operators.

) “Particle ona loop” L2(8)
V2t = Af, Eigenvectors of Laplace operator
{62®™ 1}, ne Z (Integers)

L2(R)—=—1, ON basis {e,} of L*(R)
o {(t,e, )}

MITRE

Linear Analysis 3

The sequence space has a standard basis, but the other “realizations” of H have no natural
bases. Orthonormal bases frequently arise in relation to Hermitian operators. The special
functions of mathematical physics are instances of this. In particular, the Fourier series basis
derives from the Laplace operator on a circle (or an interval). Once an orthonormal basis is
secured, the equivalence to the sequence space is constructed by taking dot products with
basis vectors.

12




Linear Analysis 4

View Has L*(R)

Linear map T:L? (R) —» L2(R) can be represented as an integral operator
(T)(x) = fk(x,y)}(y)dy,
some "function" k(x,y), called the kernel, on R?

The "function” k(x,y) may have §- function singularities

Example: T=1 Thenk(x,y)= d(x-y)

"Resolution of Id": If {e, (x)} Is an ON basis,
then for identifty map I, k(x-y) =X e,(x)e,(y)

(Physlcs: 1= 3|n>< nl)

MITRE

Linear Analysis 4

In fact, every linear map on L?(R) can be represented as an integral operator (although
the “kernel” may have delta function singularities, e.g., the case of the identity operator).
This is the function space version of the fact that any linear map can be represented by a
matrix.

13




Linear Analysis 5

Hermitlan: k(x,y)=k(y, x)
LT k(x,y) =k(x-y),some k:R > C

Convolution: (f+g)(x) = [ f(x— y) g(y)dy

So LTI systems are convofution operators.
h = Impuilse response function

Matrix: ON basis {ey}, k=12,
T:H—H has (a;),Te, = lza“el

MITRE

Linear Analysis 5

In the case of a linear “time-invariant” operator, the kernel is really a function of one
variable. Such an operator is thus a convolution with a fixed function, called the impulse
response function (the output of a delta function input).

14




Fourier Transform 1

@ Unitary Transform: T:H—-H
(Tv,Tw)=(v,w), allv,weH

Examples: (Taf)(x)=f(x-a) translation
(E.N)(x)=e*"™ {(x) modulation
(@,f)(x)=vaf@x) diation

A nxn matrix, det A=1 (SL, (R))
Ta:2R")-> L2 R
(Tah)(x) = 1(Ax)

MITRE

Fourier Transform 1

Important examples of unitary transforms of the function space L2(R) are translation,
modulation and dilation.

15




Fourier Transform 2

Fourier Transform:

F (@) = f(@) = [ 2Mx0Of (X)dx =( Eo 1)

"Miracle" DfA (w) = (brim)f w)
Turns differential equations In algebraic equations

<£ 2> =(f,g) Parseval's Thm

(f% gf\= fA Q Convolution Thm

MITRE

Fourier Transform 2

From the definition of the Fourier transform, it is easy to see that it is unitary (Parseval’s
theorem). An important fact about the Fourier transform is that it turns differentiation
operators into multiplication operators, simplifying the solution of differential equations. For
signal analysis, the crucial fact is that the Fourier transform turns convolution into
multiplication. These important facts justify the central role of the Fourier transform in
analysis. We will see that certain practical considerations will lead us elsewhere, however.

16




Theory

® Gabor Wavelets
@ Affine Wavelets

@ Time-Frequency Localization

Theory

In this section we outline the theory of the wavelet transform as it exists today. There are
basically two types of wavelets: Gabor wavelets, which relate to translations and
modulations; and affine wavelets, which deal with translation and dilations. There is an
essential difference between these two types of wavelets in the way they divide the time-
frequency plane. This leads us into some general considerations of localization in the time-

frequency plane.

17




Overview

Bases and Frames / \ lation Equations

Overview
Wavelets relate to a great number of topics in signal processing. In this course, we will

cover the time-frequency aspects of wavelets, along with considerations of sampling,
filtering, and bases and frames.

18




1910 A. Haar

1920 J.L. Waish

1946 D. Gabor

1977 D. Esteban, C. Galand

1980-5 P. Burt, E. Adeison
M.J.T. Smith, T.P. Barnwell
M. Vetterli

1985 A. Grossmann, J. Morlet

1987 |. Daubechies, Y. Meyer, S. Mallat

History

In 1910, Haar discovered an orthonormal basis constructed from a single function, subject
to discrete translations and dilations. Another such orthonormal basis was not discovered
until 1985, by Daubechies and others. Meanwhile, in 1946, D. Gabor laid the foundations of
the time-frequency approach to bases, leading to the short-time Fourier transform. In 1977,
Estaban and Galand, researchers at IBM-France, devised a filtering method into low and high
passbands that were free of aliasing on reconstruction. Although an FIR filter could not be
found to satisfy their criteria (a problem solved by Smith and Barnwell in 1980), they laid the
foundations of the present theory of wavelets. Grossmann and Morlet constructed affine
wavelet bases for good signal decomposition in the context of oil exploration. Finally, the
mathematicians Daubechies, Meyer and Mallat constructed an elegant theory for this time-
scale approach to bases.

19




The Fourier Transform

o Fourier theory is well-established

— Decomposition of signal into frequency components
(Fourier coefficients)

— Basic signal components given by functions 2"/t

The Fourier Transform
To introduce the wavelet basis, recall that the Fourier transform decomposes a signal into

its harmonic components. This is useful when the signal has well-defined periodicities, such
as the sum of two sine waves as depicted.

20




The Fourier Transform (Concluded)

o Stationarity assumption - signal components fixed for
all time

— Fourier coefficients require knowledge of signal for
all time

— Poor time-frequency localization
¢ Possible alternatives

— Windowed Fourier Transform (Gabor Wavelets)
— General Time-Frequency Distributions
— Time-Scale Distributions (Affine Wavelets)

The Fourier Transform (Concluded)

In the context of stochastic processes, one requires the assumption of stationarity. While
the signal may be random, statistically it has the same harmonies at all times. For signals that
do not satisfy this assumption (no actual signal is stationary), so that the harmonic content is
time-varying, the Fourier method is inadequate in that it does not register the time structure
of harmonics. As an example, the Fourier transform of a musical piece would tell you only
what notes occurred, not when they occurred.

To get around this problem, several methods have been developed. Gabor thought to
apply a running “window” to the signal before doing the Fourier transform, now called the
short-time Fourier transform. More generally, there are ways to represent a running spectral
content of a signal, not dependent on a windowing function. These fall under the rubric of
time-frequency distributions, which we will discuss later. Finally, there is the time-scale
approach of the affine wavelets, which is the focus of this course.

21




Non-Stationary Signal Processing

Time-dependent spectrum

.

——e e
» C_J - L] L) ] ]

Speech Signal

o Wavelets are a “new” tool for time-frequency analysis
o Two classes of wavelets

— Gabor wavelets: windowed Fourier transform
— Affine wavelets: provide multiscale decomposition

Non-Stationary
These new wavelet tools allow the analysis of nonstationary signals, which abound in

nature. A classic example is speech (or music), whose “information” is clearly in the
changing spectral content.

22




Gabor Wavelets

Time-Frequency Plane

¢ Window functions have fixed size and different shapes

o Window function fixes time and frequency resolution

— Uncertainty principle dictates (At)(Af) > -

o Useful for analysis of narrowband processes

MITRE

Gabor Wavelets

To improve time-localization over the Fourier transform, one can multiply the signal by a
“window” function first. Since the Gaussian function has optimal time-frequency spread
according to the Uncertainty Principle (equality is achieved), Gabor chose the Gaussian as his
window function. Thus, the Gaussian function, translated and modulated integral amounts, is
the complete system of functions called the Gabor wavelets. Note that unlike the Fourier
basis, this system is not orthogonal.

23




Gabor Wavelets (Continued)

o Basic window function g, e.g.
g(t) = x[-1/2,1/2g(t) Haar
g(t) = n=1/4¢-t7/2 Gabor
o Energy distribution in time: (Aat)?2 = |itg(t)li?/llgll?
Energy distributioninfrequency: (Af)2 = |If3(£)11?/113l1

o Window functions are defined by
gap(t) = €™t g(t — b)
Gap(f) = e~ 2mUU-adbg(5 _q)
o If energy in time-frequency plane for g is centered at

(ap,bp) then energy in time-frequency plane for g, ; is
centered at (ag + a,bg + b)

MITRE

Gabor Wavelets (Continued)

The uncertainty, or spread, of a function in time and frequency is defined as above.
Regardless of which function is chosen, the product of the two spreads is bounded below
(Heisenberg). Furthermore, translation and modulation do not change the characteristics of
spread, but only shift the center of concentration in the time-frequency plane (defined by

means of the quantities |f|2 I_flz).

24




Gabor Wavelets (Continued)

o Windowed transform W, maps L2(R) — L2(R?)

Wys(a,b) = / 5(t)gao(0) dt

e Reconstruction formula
3(8) = [ [ Wys(a,b)ga(t) dadb

¢ Redundancy in continuous-parameter representation
— Some redundancy can be good
— Sampled transform can provide reconstruction of s

s(t) = Z Wys(agm, bOn)gaom,bon(t)

mn

Gabor Wavelets (Continued)

For a choice of a window function g with ligll = 1, the Gabor transform is given by an
inner product of the signal with a translated, modulated g. The Gabor transform, as a
function of the translation and modulation parameters, allows exact reconstruction of the
original signal. In fact, discrete samples of the transform can also provide reconstruction, for
special choice of lattice parameters ag, by,

25




Gabor Wavelets (Continued)

¢ Reconstruction depends on choice of parameters ag, bg
gma(t) = e2m0™lg(t — bon)

agbg <1 Frames
agbg = 1 Bases Possible
agbp > 1 Undersampling

Gabor Wavelets (Continued)
For aghg S 1, reconstruction is possible (g has to be well-chosen also). The case aphp =1

is special in that actual bases are possible, not just frames (which often have more vectors
than necessary). For aghp > 1, reconstruction is impossible for any g.

26




Gabor Wavelets (Concluded)

e Uncertainty Principle dicates that (At)(Af) > .-

{gmn} Dbasis (exact frame) = |itg()ll|lfg(f)li = oo

o Thus good time-frequency localization is not possible for
Gabor wavelet bases (exact frames)

o Equivalently, good time-frequency localization requires
redundancy in the Gabor transform

Gabor Wavelets (Concluded)

Unfortunately, for such a Gabor frame to be a basis, the window function must have poor
time-frequency localization properties—either the time or frequency spread diverges. In
particular, the Gaussian window does not give rise to any basis, since its time and frequency
spreads are finite (in fact optimal). In general, good time-frequency localization with Gabor
wavelets can be achieved only by using frames.

27




Affine Wavelets

Time-Frequency Plane

¢ Window functions are obtained by dilating and

translating a single function
— Functions have difterent sizes and same shape

¢ Provides for multiscale analysis
— Good time resolution at high frequencies
— Good frequency resolution at low frequencies

Affine Wavelets

Affine wavelets are constructed by translations and dilations of a single functions. These
give rise to a different tiling of the time-frequency plane when considering discrete bases. In
essence, affine wavelets achieve good time resolution at high frequencies, and good
frequency resolution at low frequencies (at the expense of good frequency or time resolution,
respectively). For numerous applications, this choice in the time-frequency trade-off is
advantageous.

28




Affine Wavelets (Continued)

o General Theory
¥ € L2(R) fixed; set ¥, 5(t) = al/2¢(at - b)
Wy, : L2(R) — L?(R?)
Wys(a,b) = fs(t)mdt

e For the reconstructionof s

sw=c;' [ / Wys(a, by, 5(t) 922

we need an admissibility condition
-1 7
Cy = o [ BN/ df < o0
so that )(0) = 0

Affine Wavelets (Continued)
The affine wavelet transform is giver. by an inner product of the signal with a translated,

dilated wavelet. It also allows reconstruction of the original signal, under mild conditions on
the wavelet function (it has zero mean).

29




Affine Wavelets (Continued)

« Discrete Version: Yman(t) = ap/2p(alt — bon)

e Now
Pm,n(t) = ag ™! 262" I%0"/ 9 G £ faTt)
so that the parameter m determines the resolution in time
and frequency while the parameter n locates the center
of energy within each scale

m > 0: good time resolution
m K 0: good frequency resolution

Affine Wavelets (Continued)

Again, discrete samples of the wavelet transform can suffice for reconstruction. The
dilation parameter effectively controls the time-frequency characteristics of the wavelet.

30




Affine Wavelets (Concluded)

o Consider the Haar example: ap=2,byg=1
¥ = 10,0 = X{0,1/2) ~ X[1/2,1)

2 L3 »

¥0,0 = ¥0,10

Affine Wavelets (Concluded)

As a basic example, the Haar wavelet and certain of its translated and dilated cousins are
depicted.

31




Wavelet Transform

Wys(a,0) = [ s(t)dap(t)dt

Gabor Affine

a=m, b=n a=2m b=n
¢m,n(t) = e2mimt g(t—n) 1/’m,n(t) = 2m/2 Y(2™t — n)

) = 3 Wys(m,n)gma(t)

nm=-—00
1

wavelet transform

Wavelet Transform
In summary, both the Gabor and Affine wavelet transforms are given by inner product of

the signal against a two-parameter family of functions. Both allow discrete sampling to
provide reconstruction.
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Multiresolution Analysis

A multiresolution analysis for finite energy signals L2(R) isa
collection of closed subspaces { V. } satisfying the properties

® Vm C Vs

e NV, = {0}

e UV = L2(R)

o 3(t) € Vin & 3(2t) € Vi

o There exists ¢ so that {o(t — n)},cz is an orthonormal
basis for

Multiresolution Analysis

Essentially, every orthonormal wavelet basis can be derived from a construction due to
Mallat and Meyer called multiresolution analysis. Assume that the function space L2(R) has
a sequence of nested subspaces, whose elements are related by dilation by powers of 2.
Furthermore, assume that one such space, say Vg, has a function ¢ whose integer translates
are in Vo, and form an orthonormal basis.

33




Multiresolution Analysis (Continued)

o Ateach resolutionlevel V., = Vn®Wn
o Vm = {3(2™t) : s € Vp}
Wm = {3(2™t) : s € Wy}
e We thus obtain a decomposition of L2(R):
L(R) = Vm®Wpy1 ® Wy @+
= O&Wnm

Here, V;, is the resolution at level m and the remain-
der W, 11 @ - - - contains the high frequency components
needed to generate all of L2(R)

Multiresolution Analysis (Continued)

Since Vi € Vm41, one can introduce the orthogonal complement space W, so that
Vme1=Vm & Wp. Since ﬂ Vm=0,and UVm =L2(R) one has that @ Wm=L2(R). That

is, any square integrable funcuon can be wntten as a sum of componcnts that live in the Wp,.
In fact, the spaces W, are spanned by the translates of a fixed dilate of a single function, y.

34




Multiresolution Analysis (Concluded)

e Since V; C V; there are coefficients {c,} so that

e(t) = ) cnp(2t —n)

o A basis for W is given by {4(t —n)},c, where ¥ is given
explicitly in terms of ¢

¥(1) = T (~1)"e1_np(2t — n)

o pysatisty f[p=1and [Yy=0

Multiresolution Analysis (Concluded)

Given this setup, the function ¢ satisfies a recursion relation called a dilation equation.
The coefficients, or taps, in the relation play an important role. A formula exists for
constructing a function ¥ from @ and its cousins, such that translates and dilates of y form
an orthonormal basis. y automatically satisfies the requirement of zero mean.

35




Example: Daubechies 4-Tap Wavelet

1 13 2 13 '

Scaling Function

_3+V3

_1+v3
co = 2 Cc1 2

Example: Daubechies 4-Tap Wavelet

The Haar function satisfies a 2-tap dilation equation. Daubechies (75 years later)
discovered a function that satisfies a 4-tap relation. The functions ¢, y (called scaling
function and wavelet, respectively) in this case are very unusual in that they are continuous
but not differentiable.

36




Example: Daubechies 10-Tap Wavelet

L
[
s
L
-
o
9
an
a8

Scaling Function Wavelet

Example: Daubechies 10-Tap Wavelet

Allowing more taps in the dilation equation permits smoother solutions, though still not
infinitely differentiable.
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Example: Non-Continuous 4-Tap Wavelet

Scaling Function

142
CO b—e

Example: Non-Continuous 4-Tap Wavelet

At the other extreme, even non-continuous wavelets exist (the Haar function is a simple
2-tap example).
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Fast Wavelet Transform

—{cH12—mn

Y2

—{E12) " e
E-E) zs[...

N N
2 8

e G  highpassfilter {(-1)"c,_,/v2}
H lowpassfilter {cn/V2}

e Perfect reconstruction of z( from z,,y;,¥2,. . ., yp With
order N algorithm

Fast Wavelet Transform

The coefficients in the relations for @, y give rise to FIR filters H, G, which serve as
lowpass and highpass filters, respectively. A sampled signal of length N is high and lowpass
filtered and subsampled. The resulting lowpass signal, of length N/2, is again high and
lowpass filtered, and so on, until the process stops. The resulting set of highpass signals, plus
one lowpass term, allow exact reconstruction of the original signal. The whole process is

O(N).
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Fast Wavelet Transform (Concluded)

¢ Analysis
Data zo[n]
LP Filter Coefficients h(n] = c[n])/V?2
HP Filter Coefficients gln] = (=1)"¢[1 — n)/V2
Smoothed Data z1[n] = T h[2n — k]zglk)
Detail Data y1ln] = Tk g9(2n — K)zofk)

o Synthesis

zoln] = Y_ z1[KIR[k] + 1 [k]g(k]
k

hlk] = h[2k —n] and glk] = g[2k — n)

Fast Wavelet Transform (Concluded)

This slide gives a synopsis of the digital wavelet analysis and reconstruction formulas.
Note that the highpass filter is directly constructed from the lowpass one.
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Daubechies’ List

In 1988, Daubechies published a list of useful wavelet lowpass filters, which she labeled
as yhy, for integers N (unrelated to signal length; 2N is the number of taps). Here we present
the 4, 6, 8, 10, 12, and 14 tap filters.

Nhn
4829629131445341
.8365163037378077
.2241438680420134

-.1294095225512603

WIN=O] =

.3326705529500825
.8068915093110924
.4598775021184914
-.1350110200102546
-.0854412738820267
0352262918857095

W W =IO

.2303778133088964
.7148465705529154
.6308807679398587
-.0279837694168599
-.1870348117190931
.0308413818355607
0328830116668852
-.0105974017850690

N NN BIWIN| =] O

N=3$§ .1601023979741929
.6038292697971895
.7243085284377726
.1384281459013203

-.2422948870663823

-.0322448695846381

0775714938400459

-.0062414902127983

-.0125807519990820

.0033357252854738

OO AN &IWIN =IO
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Nhn

N=6

.1115407433501095

.4946238903984533

.7511339080210959

.3152503517091982

-.2262646939654400

-.1297668675672625

.0975016055873225

0275228655303053

-.0315820393174862

0005538422011614

—la] ool <] alwlvl—|o] =

0047772575109455

-.0010773010853085

.3965393194818912

7291320908461957

.4697822874051889

-.1439060039285212

-.2240361849938412

0713092192668272

10806126091510774

-.0380299369350104

O] OO AN A BIWINI =IO

-.0165745416306655

0125509985560986

.0004295779729214

-.0018016407040473

.0003537137999745
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Daubechies’ List 2

The graphs of some of the scaling and wavelet functions from this list are depicted here.
Note that the functions are increasingly smoother down the list.
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Time Frequency Localization via the
Weyl Correspondence

¢ Technique for locslizing a signal in a region of the time-frequency (phase) plane
®  Generslizes bandpass and time pass filters to time-varying bandpass filters

¢ Depends on s ime-frequency joint distribution and a reglon in the phase piane

Time Frequency Localization via the Weyl Correspondence

We now consider in more detail the notion of time-frequency localization of signals. The
Fourier and wavelet bases gave rise to time-frequency tilings with a certain structure.
Projecting a signal onto the span of a subset of these basis vectors would amount to
projecting onto a subset of the time-frequency plane. While the subsets involved had a
rectangular structure previously, we will now study such projection operators that relate to
arbitrary domains.

To begin with, projecting onto a subset of the time-frequency plane is a common
operation in filtering theory. For example, a bandpass filter projects onto a strip domain
parallel to the time axis. Similarly, timepass filtering (restricting the signal to a time domain)
can be viewed as projecting onto a strip parallel to the frequency axis. But how can one
project onto an arbitrary domain? And which functions are well-localized in such domains?
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Preliminaries

Sampling Theorem

f(x) = 21t (n) sinc( x (x-n))
for {(x) bandlimited to [-1/2, 1/2]

Heisenberg Uncertainty Extremals:

X1 UDEH 2 18= gt o) =2"%xp (- xx%)
D= 12 xi d/dx

exp(2niax) ¢{r(x-b))

Preliminaries

As a preliminary, consider bandlimited function. The sinc function is bandlimited. In
fact, its integer translates form an orthonormal basis for bandlimited functions. Even more,
the coefficients involved in expanding any bandlimited function in this basis are actually the
values of the function at the integer points (Sampling Theorem). Note that one has one basis
function per unit area in the band domain—this is the Nyquist density of states.

The bandlimited sinc functions are analytic functions, making them very special.
However, though limited in frequency, they have very slow decay in time (1/x). Functions
that are well-localized in both time and frequency (e.g., the product of their time and
frequency spreads is small) tend to be even better. For example, the extremals of the
Uncertainty Principle are the (modulated, dilated, and translated) Gaussians, which have
exponential decay in time and frequency, in addition to being analytic.
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Wavelet Transforms

¢+ Affine wavelet transform

Ti(a,b) = I f(x) 1@ g(a x - b) dx

¢ Gabor (W-H wavelet) transform

G(ab) = j f(x) exp(2xiax) g(x - b) dx

Wavelet Transforms

For square-integrable signals that are not necessarily bandlimited, there is still a discrete
representation available, now in the Affine or Gabor Wavelet Transform. In this case, the
sampling is on a two-dimensional lattice (the affine case is also on a lattice, when log a is
used as a parameter instead of a).
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Time-Frequency Decomposition

Fourier Wavelet

Time-Freq Loc

Faganey

Time-Frequency Decomposition

In terms of time-frequency concentration, the Fourier and wavelet bases have rectangular
domains of support. In the Fourier case, the rectangles are of identical shape, while in the
wavelet case they vary, though still of the same area. To find basis functions that have more
general support domains, we study a class of time-frequency localization operators.
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Linear Filters

Bandpass Time pass

B: f— (fX) A: £ £,

Linear Filters

The simplest time-frequency localization operators are the projections onto time or
frequency pass regions, as defined above.
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Prolate Spheroidal Wavefunctions

Landau, Pollack and Sleplan (1961)
For f with |lfli=1,

max ||ABf]|

Equivalently, maximize:
(aBt, ABf) = (ABf,Bt)
(BABf, )
* Thus, seek maximum eigenvalue (and elgenfunction) of
the positive, seif-adjoint operator BAB.

¢ Succeeding eigenvalues are maximal in the space
orthogonal to the previous eigenfunctions. Get the
well known prolate spheroidal wavefunctions.

MITRE

Prolate Spheroidal Wavefunctions

In 1961, Landau, Pollack, and Slepian, at Bell Labs., defined a localization operator for a
rectangular region in time-frequency space. Their operator was just a concatenation of the
bandpass, timepa--, and bandpass operators. It emerged that their operator commuted with a

Laplace type operator, whose solutions were well-known: the prolate spheroidal
wavefunctions.
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Wigner Distribution

Time-freq. shift: p(a,b)f(x) = exp(riab)exp(2riax) f(x+b)
Ambiguity Fn.: A(f,g)(a,b) = < p(a,b)f,g>
Wigner Dist.:  W(f,g) = A(f,g)*

energy representation: satisfaction of

marginals
freq

:’f‘(w)’

Wigner Distribution

To build an operator corresponding to more general domains, we have to proceed in a
different way. First, consider the Wigner distribution, which is nothing else than the Fourier
transform of the Ambiguity function. The Wigner distribution Wigner distribution of a
signal is essentially a distribution of the signal’s energy in the time-frequency plane. The
integral of the Wigner distribution over the plane yields the energy of the signal, while
integrals along lines parallel to the axes yield the power and the power spectral density,

respectively.
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Weyl Correspondence

Given a symbol function S(w.,t),
define an operator Ly by

(L19) = | s(wt) W(E,g)(w,Hawat

~A

Example: S = XQ

General

Wey] Correspondence
Using the Wigner distribution, H. Weyl defined an operator as above for any “symbol”

function S. We are interested in the case when S is the characteristic function of a set £2(i.e.,
Sw,0)=1if (w,t) € 2, 0else).
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Cohen's Class Operators

Cohen's class distribution:

PEGWY = [ W(f.g)a.b)s(w-a,t-b)dadb

Cohen's class operator L;:

(8t g) = j S(w,OP(f,g)(w,t)dwdt

SWH) = [ S(w.t)s.(a-w,b-t)dadb

s (a,b) = s(-a, -b)

Cohen’s Class Operators

In fact, such a procedure for defining operators can be generalized from the Wigner
distribution to any one of the so-called Cohen’s class of time-frequency distributions.
However, such a generalization is illusory, and merely amounts to a change of the symbol
function. The utility of working with distributions other than the Wigner distribution is
mainly in the interpretation.
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Daubechies Operator

(Dgh,g) = [ S(w,t)D(f,g)(w,t)dwdt

D(t,g)w,t) = (f,p(-t.W)e Xp(t,W)g,8) ¢=2"exp(-xx)
DILAWY = (f.p(-twgy  the spectrogram

Reallization as a Cohen's class operator

s(w-at-b) = W (b, a)e, p(-b,3)¢) = 2exp (2¢ [(w-a)2 +(t -b)zl)

Daubechies Operator
In 1988, Daubechies defined such a localization operator, in terms of the “spectrogram”

distribution, which is the modulus-squared of the short-time Fourier transform with a
Gaussian window. The spectrogram is a well-known tool in speech processing.
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Weyl vs. Daubechies

Eigenvalues
of Weyl operator

Localizationon a

ball of area 100
Elgenvalues of

Daubechies operator

Eigenfunctions =
Hermite functions

Weyl vs. Daubechies

In the case of localization onto a circular disc, it turns out that the eigenfunctions for both
the Weyl and Daubechies operators are identical: the Hermite functions. In this case, one
can compare the eigenvalues. While there is a marked drop-off near 100 (the area) in both
cases, there are two differences. The drop-off is faster in the Weyl case, but there is a Gibbs-
like ringing near the zero eigenvalue. Note that for numerical purposes, the Weyl operator

. <. . ey e 1
allows a sharper focus of energy, if projecting onto eigenvectors with eigenvalues > 7

55




Prolate Spheroidal Wavefunctions

Localization on a 4x2 ﬁ ;&
rectangle

Ei genfun ctions = First 9 eigenfunctions
Prolate spheroidal
wavefunctions

Elgenvalues

Prolate Spheroidal Wavefunctions

The next three slides consider projecting onto a rectangle, of area = 8. Here the first nine
prolate spheroidal wavefunctions are presented. Because these functions are exactly

bandlimited, they have a slow drop-off in time (e.g., 1/x), as evidenced by the last three
functions.
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Weyl Eigenfunctions

A A

Localization on a 4x2
rectangle First 9 Weyl eigenfunctions

et}

.0

Eigenfunctions =

New Wey! solutions Eigenvalues

Weyl Eigenfunctions
When using the Weyl correspondence, one finds eigenfunctions with a very similar

appearance to the prolate functions, although the drop-off in time is better. MITRE research
mathematicians were able to derive bounds on the rate of decay of the solutions.
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Daubechies Eigenfunctions

Localization on a 4x2
rectangle

Elgenfunctions =
New Daubechies
solutions

Daubechies Eigenfunctions
In the Daubechies case, the solutions appear similar (again), but with even better decay.

Note that by contrast, the eigenvalues decay slowly, indicating that the total energy is spread
to many modes.
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New Results (Wigner Distribution Case)

® For localization onto a general bounded domain with a

piecewise (once) differentiable boundary, we prove
that:

Wigner solutions are analytic
They have exponential decay, for any positive exponent

Their Fourier transforms satisfy identical conditions

Eigenvalues decay at the rate of n

MITRE

New Results (Wigner Distribution Case)

The qualitative observations made earlier are confirmed by theorems, proved in
collaboration with Jayakumar Ramanathan of E. Michigan University, that the eigenfunctions
of the Weyl operator are analytic and have exponential decay, under mild hypotheses
regarding the domain of localization. [J. Ramanathan and P. Topiwala, “Time-Frequency

Localization and the Weyl Correspondence,” SIAM Journal of Mathematical Analysis,
September 1993.]
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New Results (Spectrogram Case)

® For localization onto a general bounded measurable
domain, we prove that:

= Spectrogram solutions are analytic and of quadratic exp. decay
They and their derivatives decay faster than 1/|x| to any power
Their Fourler transforms satisfy identical conditions
Eigenvalues decay faster than 1/n to any power
The number of eigenvalues above a fixed number ¥, O<xl1,

Iis asymptotically equal to the area of the domain, upon
rescaling the domain - Nyquist density.

MITRE

New Results (Spectrogram Case)

For the spectrogram case (Daubechies operator), the results are even stronger: the
solutions are analytic and have quadratic exponential decay, under very general conditions on
the domain. We also have a result along the lines of Nyquist density: for a given domain,
the number of eigenvalues greater than a fixed number ¥y, 0 <y < 1, is asymptotically equal to
the area, as the domain is dilated radially. These sets of results confirm the intuition that
signals that are well-localized in the time-frequency plane satisfy strong regularity and decay
conditions. Furthermore, once found, they lead to simple projection operators, by projecting

1
onto the span of the eigenfunctions with eigenvalues greater than some cutoff (e.g., -2-)

[J. Ramanathan and P. Topiwala, “Time-Frequency Localization and the Gabor
Transformation,” Journal of Applied and Computational Harmonic Analysis (to appear).)




Applications

® 1-D Signal Filtering
® 1-D Transient Detection

® Image Compression

Applications
We now consider some applications of the ideas and tools developed so far. We will

consider only three topics: noise and interference filtering, transient detection, and image
compression.
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Noise Filtering

Example of noise filtering froma .,
linear FM (chirp) signal

Wigner distribution of a) chirp
signal; b) chirp in 0 dB noise;
c) Weyil filtered noisy signal

Noise Filtering

In this example, the Wigner distribution of a chip signal is given in (2). (b) is the Wigner
distribution of the chirp with 0 dB Gaussian noise added. Note that while the Wigner
distribution of the chirp is a straight line, corresponding to the slope of the chirp, the noise
has energy distributed all over the time-frequency plane. (c) is the Wigner distribution of the
noisy signal after it has been Weyl filtered, using a narrow strip along the chirp.
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Noise Filtering (cont'd)

Plots of signals

a) chirp signal;

b) chirp in 0 dB noise;
c) Weyil filtered noisy
signal

Noise Filtering (Continued)

This slide shows the actual signals. Note that while (c) is not an exact reconstruction of
(a), it is a remarkable improvement on (b).
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Noise Filtering (final)

chirp signal nolsy chirp filtered noisy signal

¢ Enhanced Wigner distribution intensity plots
using windowing of signals (cos?).

MITRE

Noise Filtering (Final)

The ringing effect in the Wigner plots can be eliminated by simple windowing of the
signal-here a cos2x window is used.




1-D FT Signal, R=1

Original signnl

1-D FT Signal, R=1

In this example, we will consider detection of a high-frequency low magnitude transient
signal in a background smooth process. Here a Gaussian pulse is used as background, and a
high-frequency sinusoid as the interesting transient. We will compare the effects of using
FFT vs. wavelet processing, in particular compression, on the detectability of the transient.

In this slide, the original signal is reconstructed exactly under FFT processing (FFT and IFFT
applied), with compression factor R=1 (no compression). Note that compression is
considered here as a method of feature extraction.
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1-D FT Decomposition, R=1

Real part of Fousior transform
LS v

—

1-D FT Decomposition, R=1

Here the real and imaginary parts of the Fourier transform (FFT) are displayed. The
high frequency transient is coded mainly near the middle of these plots.
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1-D WT Signal, R=1

Original signal

1-D WT Signal, R=1

Similarly, the Wavelet transform (WT) reconstructs the signal exactly without
compression.
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1-D WT Decomposition, R=1

First low pems F‘-uhwp-

1-D WT Decomposition, R=1

Here, the first two lowpass and highpass components are depicted (out of 5 total
computed). Note that unlike the FFT, the character of the transient and Gaussian pulse are
partly reflected in these frames. In particular, the time-domain on which the transient occurs
is clearly visible in the first highpass component. In the following WT slides, attention
should be focused on that region. Note that the lowpass filter acts as a local integrator, which
is why the transient is not detected in that component; the highpass filter is a differentiator,
which reacts strongly to the transient.
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1-D FT Signal,

'G.‘U - L

1-D FT Signal, R=10
Here 10:1 compression has been applied in the Fourier domain before inversion. All

traces of the transient are lost; the resulting signal is smooth but significantly deformed (in a
mean-square €ITor sense).
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1-D FT Decomposition, R=10

Roal part of Fourier wsnafarm

[ ®©

Imaginury pent of Fourier wraform

i
)

100

1-D FT Decomposition, R=10
Compression was implemented by setting the lowest 90% of the terms (in magnitude) to

0. This had the effect of deleting all the high-frequency coefficients (which would normally
reside in the center of these plots due to the cyclic nature of the FFT).
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1-D WT Signal, R=10

1-D WT Signal, R=10
By contrast, the wavelet transform retains some features of the transient under 10:1

compression. In general, the signal is closer to the original in a mean-square sense than the
Fourier reconstructed signal.
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1-D WT Decomposition, R=10

First low pass ) First high pass

1-D WT Decomposition, R=10

In the wavelet decomposition, the 10:1 compression still retains the effect of the transient
in the first highpass component. Thus, a successful detector for this can be designed based
on the first highpass component by setting a threshold. Again, the time of occurrence of the
transient is directly available, as well as a certain measure of its intensity. We note that other
types of transients may be effectively represented in other components of the wavelet
decomposition, depending on their nature.
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1-D FT Signal, -3dB N, R=10

v i w L3

Fourier reconstructod signal

MITRE

1-D FT Signal, -3dB N, R=10

We continue the experiment by adding -3dB Gaussian noise, which has no effect in the
FFT case.
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1-D FT Decomposition, -3dB N, R=10

Raal part of Pouriar wensform

- v —

1-D FT Decomposition, -3dB N, R=10

The noise is filtered away along with the transient under compression in the Fourier
domain.
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1-D WT Signal, -3dB N, R=10

Origionl sigml

v

1-D WT Signal, -3dB N, R=10

By contrast, the WT continues to retain features of the transient, while filtering most of
the noise. '
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1-D WT Decomposition, -3dB N, R=10 |

First low pass First high pass

1-D WT Decomposition, -3dB N, R=10

Again, a threshold-based transient detector, using the first highpass component, would be

successful here.

76




Lena Original

We now consider image compression, which is perhaps the most promising application of
wavelets to date. Here an original 512x512 pixel 8-bit grayscale image (“Lena”) is
presented. This image is an industry standard in image compression. It contains a variety of
textures, from the smooth skin to the ruffled feathers in the hat. “Lena” and “House” are
public domain images, obtained from a database at the University of Sourthern California.
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Lena JPEG 44:1

This slide presents a highly compressed version of the Lena image, using an algorithm
that is now the international standard for still image compression—the Joint Photographic
Experts Group (JPEG) algorithm. We used public domain JPEG software courtesy of the
Inaependent JPEG Group. This algorithm divides the image into 8x8 pixel blocks, computes
a Discrete Cosine Transform (DCT) on each block, and then requantizes as necessary to
achieve the desired compression ratio. Huffman coding is also used to achieve the final
entropy coding of the quantized blocks. At 44:1 compression, the image displays
considerable tiling as many 8x8 blocks are reduced to a single grayscale. Note that the
texture on the face, shoulders, and woodwork in the background is lost.

Note that blocking of the image data is necessary for DCT-based algorithms to (a)

preserve locality of image data under the transform, and (b) bound the computational
complexity, which is O(N log N)-blocking bounds the log N factor.
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LENA JPEG 44:1 2/28/93
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Lena Wavelet 45:1

At 45:1, the Wavelet Transform (WT) retains more of the structure of the original,
including edge as well as texture information. In general, the WT tends to retain hard edges
best, and will sacrifice textural information at high compression. Note that blocking of the
image data is completely unnecessary in this case, since the WT preserves locality and has
O(N) complexity. We used public domain wavelet software courtesy of the MIT Media
Laboratory.
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LENA WAVELET 45
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Lena JPEG 76:1 (Maximum)

At 76:1, the maximum compression possible on this image under JPEG, the image is
unrecognizable. In fact, it could pose as excellent cubist art.
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LENA JPEG 76:1 (MAXIMUM) 2/28/93
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Lena Wavelet 85:1
By contrast, at the extremely high compression of 85:1, the image is still recognizable.

The eyes are still well-preserved, which is important for recognition. Among the artifacts
created by the WT are aliasing effects around edges.
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House Original

As a second example, we treat an aerial view of a residential area. (Unfortunately, this
reproduction is very dark.)
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HOUSE ORIGINAL 2/28/93




House JPEG 40:1
At 40:1, JPEG produces a low-quality blocky image. The sidewalks are still visible, but

the roads, trees, and many houses are obscured and tiled. The tiling is especially awkward
for automatic target recognition purposes, since it introduces artificial straight lines.
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HOUSE JPEG 40:1 2/28/93




House Wavelet 39:1

At 39:1, the wavelet image is also of poor quality, indicating that the advantages of
wavelet compression over JPEG are not uniform over all image types. Again, the sidewalks
are better preserved then the streets, trees. Straight edges continue to be associated to houses,
though.
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HOUSE WAVELET 39:1 2/28/93




Wavelet Code

We conclude with some simple MATLAB code for wavelet processing of 1-D signals,
including compression. This code uses the Haar wavelet, the simplest of the wavelet filters.
We have more sophisticated code, including C codes for high yerformance wavelet signal
processing, for one and two-dimensional signals.
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% Pankaj Topiwala, The MITRE Corp., Burlington Rd., Bedford, MA 01730
% This program camputes the wavelet transform with the Haar wavelet

% up to level 5; conpression ratio R. load data file 'data’.

$ Data file must have length power of 2.

clear;

clg;

% set compression ratio...
R=1;

% retrieve (or create) data...

load data;

x=data';

% practice data: t=1:128; x= exp(- (abs(t-64).72)/20) +.1;x=x';
M=length (%) ;

I~round (M/2) ;

alpha=1/sqrt (2) ;

hl=zeros(L,M);

gl=zeros (L,M) ;

% fomm the first filter matrices...
for i=1:L,

hl (i,2* (i-1) +1)=alpha;
gl(i,2*(i-1)+1)=alpha;

hl (il 2*1) =alpha;

gl(i,2*i)=-alpha;

ed

% form the remaining filter matrices to lewvel S...
h2=hl1(1:L/2,1:L);

g2=g1(1:L/2,1:L);

h3=h2(1:L/4,1:L/2);

g3=g2(1:L/4,1:L/2);

h4=h3(1:L/8,1:L/4);

g4=g3(1:1/8,1:L/4);

h5=h4(1:1/16,1:L/8);

g5=g4(1:1/16,1:L/8) ;

% do the orthonommal wavelet decamposition to order 5 ...
cl=hl*x;

dl=gl*x;

c2=h2*cl;

d2=g2*cl;

c3=h3*c2;

d3=g3*c2;
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c4=h4*c3;
d4=g4*c3;
c5=h5*c4;
ds=g5*c4;

% plot the first two low and high pass versions...
subplot (221) ,plot (cl) ;title('First low pass');
subplot (222) ,plot (dl) ;title('First high pass');
subplot (223) ,plot (c2) stitle('Second low pass');
subplot (224) ,plot (d2) ;title('Second high pass');
pause

clg;

% PRESS THE SPACE BAR TO OONTINUE...

% threshold compression routine...
y=[d1;d2;d3;d4;d5;c5]);

z=abs(y);

z=sort (z) ;

P=round (M* (1-1/R)) ;if (R==1),P=1;end

val=z (P);

res=zeros (M, 1) ;

for F1:M,

if abs(y(j))>=val, res(j)=y(j); else res(j)=0; end
ed

$ reconstruction...
dl=res(1:L);

d2=res (L+1:1+L/2) ;

d3=res (L+L/2+1:7*L/4) ;
dd=res (7*L/4+1:15*L/8) ;
d5=res (15*L/8+1:31*L/16) ;
cS5=res (31*L/16+1:M) ;

c4=h5"*c5 + g5'*d5;
c3=h4'*c4 + g4'*d4;
c2=h3'*c3 + g3'*d3;
cl=h2'*c2 - g2!*d2'-
xnew=hl'*cl + gl'*dl;

% plot the original against the reconstructed signal...
subplot (211), plot (x);title('Original signal’);

subplot (212), plot (xnew);

title('Reconstructed signal');
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